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Absence of Debye Screening in the 
Quantum Coulomb System 
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We present an approximation to the quantum Coulomb plasma at equilibrium 
which captures the power-law violations of Debye screening which have been 
reported in recent papers. The objectives are (1)to produce a simpler model 
which we will study in forthcoming papers, and (2)to develop a strategy by 
which the absence of screening can be proven for the low-density quantum 
Coulomb plasma itself. 
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1. T H E  C L A S S I C A L  C O U L O M B  GAS 

The partition function for a (charge-symmetric) classical Coulomb gas in 
three d imens ions  is 

~U 
Z =  ~--~. f dNp dU~ e -~"  (1) 

where  ~ =  (x, e)  and d~ unites  an in tegra l  ove r  x ~ c o n t a i n e r  wi th  a sum 
over  charges  e = + l .  We have  

,-, p~ 1 r i f H =  L ~m+'~ J pvtp + ~ox,p (2) 

where we define the charge  dens i ty  obse rvab le  by 

p(x) = ~ ei6(x - xi) (3) 
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so that 

f pv lp  = ~ e ~ e j v l ( x i -  xj)  (4) 

i~bc,, is an external field. We put in the strange factor i because it will lead 
to simpler expressions when we explain the sine-Gordon transformation. 
v t ( x - y ) = " l / r . "  We have put the quotes around the 1/r because it is 
necessary to place a cutoff on the singularity of the Coulomb potential at 
short distances in order to have a stable interaction. This cutoff will be 
characterized by a length I. In particular, v~(0)= 1/l. Having enforced a 
cutoff, the self-energies of the particles are finite and we have included them 
in the interaction energy. The natural choice for this length I is the thermal 
wavelength, which is the size of the typical one-particle wavefunction in a 
corresponding quantum ideal gas 

l=\--~7 / (5) 

since it is the Pauli exclusion principle and quantum mechanics that give 
rise to a stable system which we are approximating classically. 

The other lengths which naturally arise are fl and the Debye length 

1 
lo (2zfl)l/2 (6) 

where 

z = .~ f dp e (t~/z")~'"e-t~/21 (7) 

- is the physical activity in the sense that the expectation of the density of 
particles is asymptotic to 2- as z ~ 0. The factor e -an accounts for the 
inclusion of the self-energies in the interaction. 

For this system the following theorem has been proved. (4's'9'~~ 

T h e o r e m  1. For 

zl 3 ,~ e - ill21 zl 3 
, D>~> 1 (8) 

all charge-charge correlations decay exponentially, i.e., there are constants 
C1 and L > 0 such that 

I < p ( x ) p ( y ) > l  <~ C , e  I.,-,t/L (9) 

and higher truncated charge correlations decay exponentially as the length 
of the shortest tree on the positions of the observables. 

Also L-~ ID when zl 3 and zl 3 are as in the theorem. 
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2. D I S C U S S I O N  

In ref. 5, p. 428, it was claimed that screening of observables in the 
sense of exponential decay as in the theorem above will not hold for the 
quantum plasma. The argument was strengthened by some lower bounds 
(but only on time-dependent observables) given by Brydges and Seller. 13~ 
Since then Alastuey and Martin ~t'2~ have made detailed calculations which 
state that within perturbation theory (the Wigner-Kirkwood expansion) 
screening is destroyed by effects due to diagrams with power-law decay at 
order h 4 and higher. They show, for example, that for NaC1 ions in water 
at room temperature there will be screening out to about 60 Debye lengths, 
at which point there is a crossover to a power-law tail. According to their 
analysis the typical power law is r -6, but it can be higher, depending on 
the correlation and the system. This violation of screening has nothing to 
do with statistics. It is similar in mechanism to van der Waals forces, but it 
occurs tzl even for one-component plasmas in which there are no atoms or 
molecules. Similar comments appear in a paper by Maggs and Ashcroft. ~1~ 

In this paper we exhibit an approximation to the quantum Coulomb 
plasma that captures the mechanism by which quantum fluctuations 
destroy the screening. The present paper will motivate conclusions which 
we will obtain by a complete mathematical analysis of this model to appear 
shortly, t61 The approximations we present are a possible strategy by which 
the conclusions of Alastuey and Martin could be established nonpertur- 
batively, but this appears to be an unreasonably lengthy enterprise at the 
moment. 

To motivate the choice of our model we first review some aspects of 
the proof of screening in the classical case. We introduce the Gaussian 
measure d/~/pl,,l(~b) on functions ~b(x) which by definition satisfies 

If / were zero, no cutoff, then formally 

dla~'/a'~~ (11) 

By substituting (10) into the partition function (1) and interchanging the 
integral over d/~ with the ~ and S dp d~ we are led to the well known sine- 
Gordon representation of the partition function. This represents the inter- 
acting gas as a superposition over all external fields of ideal-gas partition 
functions for particles in external fields, 
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where 

Z = f dla~,/p)v,((~) Zideal(i~ + i~e~t) (12) 

Zid~,,(i~)=exp I~ f dp d~ e - P h "  ] (13) 

=expI2zea/2' I dx cos/3~b(x)] (14) 

p2 
h(iq~) = ~m + ie~ (15) 

It is tempting to make the approximations cos/3~b ~ 1 - �89 but this 
is not quite right in cases where/3/ l~ 1. Instead the first step in the proof 
of Theorem 1 is to integrate out fluctuations of the field on all scales up to 
the Debye length lD. Under the hypotheses of Theorem 1 this is done 
(exactly) by a Mayer expansion which is convergent because the 
hypotheses say that the plasma inside a Debye sphere is close to an ideal 
gas. The result is that the short-distance cutoff l in the Gaussian measure 
dlaH/t~)v I in (12) is replaced by ID while the exponent 2zeta/21S dx cos/3(~(x) 
becomes a convergent series of nonlocal monomials in exp[ie/3fb(x)], but 
this series is still dominated by the leading term, which is local and has the 
form 2z S dx cos/3~b(x). In other words, the effect of a renormalization 
group transformation is, to a controllable approximation, to replace vz by 

v - vlo (16) 

in the measure and to drop the constant e #/2t. In fact there are also 
renormalizations of parameters, e.g., t-he dominaiat term is prefaced by a 
constant which tends to one as zl3e #/2t ~ O, zl 3 ~ o0, but we shall pretend 
these are not there throughout this paper. 

Choice of  Units of  Length. Set l D- -  1. With this choice of units 
the hypotheses of Theorem 1 imply that/3 ~ 1 and 

1 
2z = -  (17) 

/3 

Having removed all scales up to lD= 1, the next step in the proof of 
Theorem 1 is to control the approximation 2 

c o s / 3 ~ = l  i 2 2 --  ~/3 ~ -~ 0(/3 4) (18) 

2 Actually exp[(liP) cos fl~(x)] ~ exp{ l/fl} ~, exp{ -(p/Z)[~b - (2n/p)n]2}. 
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Within this approximation the partition function becomes, up to constants 
which cancel in correlations, a Gaussian integral 

~ (-.,-,s 
where u is the exponentially decaying kernel of 

u=(v-~+ 1) -1 (21) 

in terms of which one can compute correlations of charge observables by 
functional derivatives with respect to ~.x, and obtain the results of Debye- 
Hiickel theory, in particular, exponential decay of correlations. 

3. T H E  Q U A N T U M  C O U L O M B  G A S  

Now we turn to the analogous representation in the quantum case. For 
simplicity we discuss the case of Boltzmann statistics, but there are similar 
representations for Fermi and Bose statistics. This simplification is 
reasonable since we are discussing a regime in which the gas is very far from 
degenerate, 1 ~ interparticle distance by the hypotheses of the theorem. 

The correct way to take into account the failure of commutativity 
[p, x]  # 0  is to replace S dp d~ by the trace over the one-particle Hilbert 
space and use time-ordered exponentials in Z~dea~(i~b), SO that 

Z,dea,(i~)=exp {~Tr(exp [-f~ d~ h(iq~)])} (22) 

where ~b is now an imaginary-time-dependent external field ~(z, x) which is 
integrated over using the Gaussian measure d#o,| whose covariance is 
vl(x-y)6(r-a). With these substitutions in (12) the sine-Gordon 
representation (12) is still valid. 

To understand this, set ~bex t = 0, and consider 

Y'- ~.v T r u e  - t ~  

where H is the many-body quantum Hamiltonian obtained from (2) by 
p --* (h/i) O/Ox and Tru is the N-body trace. Then 

Truexp(-[JH,=Tru}im O[exp(-~Ho)exp(-~nfPV,p)] (23, 
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We use the representation (10) for each factor of exp[-(fl/2n)Spvlp ], 
each requiring its own auxiliary field ~bi(x), i =  1 ..... n. Then 

TrN exp(- [3H)  = lim f d"p~,,/p~v,(q~) TrN 

x~[exp(-~Ho)  exp(--~ifpq)j) 1 (24) 

= lim f d"po,/pl,,~(~) TrN 

where the exponential is time ordered and the collection of fields 6 ( x )  is 
united into one time-dependent field ~(,, x ) - 6 ( x )  when 

Finally we note that the trace over the many-body Hilbert space factors 
into a product of one-body traces so that 

2u 
~.t Tru  e - a n  = f d#,,,| ,(~b) Zi,t,,,(i~b + iq~ext) (26) 

where we have put the external field back in. We write S d/~v~| but we 
mean lira,, _ ~ ~ d"/~(~b). 

Following ref. 8, we can write Z~d,~(i(~) as a sum over all continuous 
closed paths X(,), r~  [0, fl], using the Feynman-Kac formula, 

�9 r(ex.[ 

=~IdWa(X, exp[-ieI:dz~(r,X(z))] (27, 

dW is the Wiener measure associated with the kernel of exp[t((h2/2m)A)]. 
The combination of (12) and (27) is a representation for the quantum 
partition function which appears in ref. 7. It is also derived and used in 
ref. 2. 

Notice that there is a Goldstone mode: 

~b('c, x) --* ~b(z, x) + f ( r )  
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where f is any function such that ~o p & f ( z ) =  0. This will be the origin of 
the long-range forces. The intuition is that the Feynman-Kac formula 
represents the quantum gas as a classical gas of closed charge loops with 
instantaneous Coulomb interactions. Each loop represents the quantum 
uncertainty around a classical position. This leads to a time-dependent 
dipole force superimposed on the Coulomb force for the classical system. 
A dipole can polarize other dipoles, leading to induced dipole-dipole or 
multipole-multipole forces which are power laws. The standard textbook 
discussions do not see this effect because they make a static approximation 
which loses these time dependences. The mechanism is very similar to the 
van der Waals forces, except that it takes place without any need for 
neutral objects such as atoms or molecules. 

To bypass some terrible technicalities we now alter the Wiener 
measure to obtain a simple model which exhibits destruction of screening 
by the same mechanism that we claim will occur in the complete model. 

4. T H E  S E M I Q U A N T U M  S I M P L I F I C A T I O N  

We replace the integration ~ dW # over all Wiener paths .by a new 
integration concentrated on just one kind of path which oscillates about 
the initial point by a distance 0(/) (the size of the wavepacket) in a random 
direction: let dtr(e) be a spherically symmetric measure on vectors e. Then 

dW t~ --. dx do(e) (28) 

The right-hand side is a measure on paths because (x, e) labels the path: 

X(z)= x + lef(r) 
[-2~T-] (29) 

f i t  ) = sin I_--if-_] 

We do not claim that this is a controllable approximation in the sense that 
there is a physically natural parameter that can be driven to some limit to 
obtain it, but it is one of the simplest ways to put a little quantum 
mechanics into a classical model. We shall choose 

dtr(e)=~I6(e)+(2n)-3/2exp(-  ll~l----~2)] (30) 

This choice perhaps would look more natural if there were no delta func- 
tion: the delta function has the interpretation that half our particles are truly 
classical while the other half are semiquantum. The choice of proportions is 
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not essential; indeed one could allow all the particles to be semiquantum, 
but the resulting model is harder to analyze rigorously. We now make some 
more changes, but these, we claim, are on a different footing from the last 
change. They are attempts to extract an effective Lagrangian, which, we 
believe, can be justified by rigorous mathematics. 

A p p r o x i m a t i o n  1 : 

I :  dr r X(r)) = f~a dr r X(O)) 

+ s dr f,';~ Vr (31) 

ft = B = r fl], x ) +  Vr fl], X(t)). dX(t) 
= 0  

f[ =/~ ~b([O, fl], x ) +  Vr fl],x).dX(t) (32) 
= 0  

where V acts on the spatial variables and 

t~ 
r fl],x)=- f, dr qJ(z,x) (33) 

The consequence of these approximations is that the dependence of 
Zidr162 + i~b~x,) on r x) is only through 

1 
el(x)  - ~-~ r x) 

In fact, in terms of these fields we find by the integration by parts 

f,'=' ;o' Vr fl], x) dX(t) = dt Vr x).  IX(t) - x]  
= 0  

that 

dr (b(z, X(r))~fll/2Ol(x)+ le'V(~2(x) (34) 

Since the fields ~ , , r  are Gaussian and ~d#o,| 
v~(x-y) 3ij, then Cj, ~62 are independently distributed according to the 
massless Gaussian measure d#,,, encountered above in the classical model. 
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Thus the partition function becomes 

Z= I d#'"(~kz) I dl~,,,(fb,).exp {22 f dx I da(e) 

x cos [ fl'/2q~,(x) + flt/2~ext + (~) '/2 le" V~2]} (35) 

Notice that if da(e) is set to 6(e) we revert to the classical Coulomb 
gas. If ~bl is set to zero, then by reversing the sine-Gordon transformation 
we obtain the partition function of a classical dipole gas with dipole 
moments e distributed according to da. 

A p p r o x i m a t i o n  2. This is the same step as discussed above for the 
classical model in which the fluctuations on scales up to ID = 1 are 
integrated out by a Mayer expansion, of which we keep only the leading 
term. Thus vt becomes v~ = v and 22 becomes l/ft. We have 

Z'~ f dlq'(q~2) ~ d/~.(~,).exp {~ I dx f da(e) 

[ l} xcos  fll/2~l(x) + fll/2~ext + e" IVy2 (36) 

The integration over da(e) can be performed explicitly and the parti- 
tion function becomes 

z :  f f 

(37) 

The next approximation is of the same nature as the quadratic 
approximation of the cosine used to prove Theorem 1. We have by the 
hypotheses of Theorem 1 that fl,~ 1, so that we use the following result: 

A p p r o x i m a t i o n  3: 
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Now we can integrate out the ~b~ field: let 

u,.2(x, y) = kernel of the opera tor  I v -  l + " 2 ]  - J 

Then 

=[I  dl~v((~')exp(-�89 

(38) 

(39) 

5. C O N C L U S I O N S  

These approximat ions  have led us to the following model of the 
quan tum Cou lomb  gas: 

1 ~ex,) (40) x exp (-- ~ f cke~t[w2-- u.,2] 

We will give a complete nonper turbat ive  analysis of  this model  in 
a forthcoming paper. ~6) Let expectations of  static charge densities be 
obtained by functional derivatives (0,)[1 

p(x,) - f i  ~ Z(~b=,,t)] (41) 
;= 1 6~ox,(X~J J~.x, =o 

Here are the conclusions we expect: 

1. The two-point  correlations decay exponentially: 

const (p(xl) p(x2) ) ~---ff---u(x, - x2) (42) 

as Ixl - x21 ~ ~ .  u is given in (21). 

2. The higher correlations do not decay exponentially;  for example,  

(p(x) p ( -x )  p(x + y) p ( - x  + y) ) 

- (p(x) p ( - x ) ) ( p ( x +  y) p ( - x +  y)) 

~ c o n s t -  u(-x)  u(x) [fl1212 lyl 6 

as y- - ,  oo with Ixl large. 
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Justi f icat ion.  Notice that in Eq. (40) the kernel u,.,(x, y) decays 
uniformly in w2 because wz(x) is smooth in x and Wz(X ) >1 1/2 for alP ~b 2. 
Therefore functional derivatives with respect to ~bext are linked in pairs by 
exponentially decaying propagators u,. z. However, the propagators u,,, 
depend on the field V~b 2 through w2. This field is distributed according to 
a massless Gaussian measure d#,, with a small perturbation by the terms 

~exp  { f  [ 0 ( 1 ) +  0(1)/~(lV~bz(x)) z] dx} 

exp(~f dxw2)'~exp{f[~+O(l'(lV(J2)z] dx} 

(44) 

Since the perturbation is a function of V~b 2 it will not make the measure 
massive. 

Comments. It is an artifact of this particular approximation and 
charge symmetry that the action is separately even in ~b~ and ~b2, which is 
the reason for the different types of decay. Alastuey and Martin ~2~ also 
found that there are different decay rates for the correlations of two versus 
four charge observables, but the differences were in the exponent of the 
power law rather than the drastic exponential versus power law that we 
obtain. 

If in Eq. (35) the two fields ~bl, ~b2 were the same field, then that model 
would have exponential decay in all correlations. This would be a classical 
system consisting of particles which carry both a charge and a small dipole 
moment. 

The quadratic approximation 

cos Ifll/2~l --~- flt/2~ext --l- (fl) ll2 e . lV021 

~-- 1 - -  ~ ,  + d~x , + e" IV~z 

in Eq. (36) would lose the symmetry ~ 2 ~  ~2 +const  which is responsible 
for the destruction of the screening. 

~ This is why we decided to put a 6 function into the measure dtr. 
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For  the full quantum Coulomb partition function (27), Eq. (31) is 
replaced by 

d r r  f l ] , x ) +  V~([ t ,  f l ] , X ( t ) ) . d X ( t )  

rl~ dt 
+Jo  --~- l-  A~b(rt, fl-], X(t))  (45) 

The extra term arises by the Ito calculus dX( t )2=  (dtlfl)12 and the dX(t)  
integral is an Ito integral. This formula has the good feature that the very 
singular field ~b(z, x) which is a white noise in its dependence on z has been 
traded in for the continuous field ~b([t, fl], x). It is possible that a nonper-  
turbative proof  of the absence of screening for the quantum Coulomb 
system can be constructed by integrating out  the (massive) time-averaged 
field (1/fl)~b([O, fl], x) as we did (approximately) in obtaining the model 
(40). 
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